Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains

نویسندگان

چکیده

We obtain the weak well-posedness results for linear strongly damped wave equation and nonlinear Westervelt on arbitrary three-dimensional domains with homogeneous Dirichlet boundary conditions. In R2, we prove in class of NTA or their limit domains, obtained as a sequences characterized by same geometrical constants. The nonhomogeneous condition is also treated Sobolev extension Rn d-set n−2<d<n preserving Markov's local inequality. For converging sequence sense characteristic functions, establish Mosco convergence functionals corresponding to formulations condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Linear and Nonlinear Boundary Conditions for Wave Propagation Problems

We discuss linear and nonlinear boundary conditions for wave propagation problems. The concepts of well-posedness and stability are discussed by considering a specific example of a boundary condition occurring in the modeling of earthquakes. That boundary condition can be formulated in a linear and nonlinear way and implemented in a characteristic and non-characteristic way. These differences a...

متن کامل

Robin Boundary Value Problems on Arbitrary Domains

We develop a theory of generalised solutions for elliptic boundary value problems subject to Robin boundary conditions on arbitrary domains, which resembles in many ways that of the Dirichlet problem. In particular, we establish Lp-Lq-estimates which turn out to be the best possible in that framework. We also discuss consequences to the spectrum of Robin boundary value problems. Finally, we app...

متن کامل

Existence for Wave Equations on Domains with Arbitrary Growing Cracks

In this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations u...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126089